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We study Taylor vortex flows by solving the steady axisymmetric NavierStokes equations 
in the primitive variables (u, t’, w, p). Fourier expansions in Z, the axial direction, and 
centered finite differences in Y, the radial direction, are used. The resulting discretized equa- 
tions are solved using the pseudoarclength continuation methods of Keller (in “Applica- 
tions of Bifurcation Theory” (P. Rabinowitz, Ed.), pp. 359-384, Academic Press, New 
York, 1977.), which are designed to detect bifurcations. In this way we accurately determine 
the first branch of Taylor vortex solutions bifurcating from Couette flow for both a wide 
and a narrow gap. Agreement with experiments is extremely good for the wide gap case and 
solutions are obtained for a larger range of Reynolds numbers than previously reported. 

1. INTRODUCTION AND FORMULATION 

For sufficiently small Reynolds numbers, Re, the only steady flow of a viscous 
incompressible fluid between concentric rotating cylinders is the Couette flow: 

u(i-, e, z) -e W(Y, e, z) = 0, v(r, 0, z) = ar + b/r. (1.1) 

The constants a, b are determined by the radii and rotation rates of the cylinders. As 
Re is increased above some critical value, Recr , the flows of this famity become un- 
stable and are replaced by those of another family of solutions containing Taylor 
vortices (see [l, Fig. 151). That is, the Taylor vortex solutions bifurcate from Couette 
flows at Re = Recr . This bifurcation has been studied both numerically and ana- 
lytically (see [3, 9, 11, 14, 151 and references therein). We present here a new com- 
putational study of this bifurcation and of the branch of Taylor vortex solutions that 
form as Re increases above Recr . The numerical techniques we use are quite different 
from those that have been used previously on this problem and they enable us to get 
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accurate bifurcated solutions beyond those previously obtained. We use the primitive 
variables (u, o, w, p), and the value of Re CT is obtained during our continuation 
procedure without appeal to the linearized stability theory or to any special bifurca- 
tion theory expansions. We formulate the problem below, the numerical methods are 
described in Section 2, and the results of two series of calculations are presented and 
discussed in Section 3. 

Let the cylinders have radii R, and R, and gap width A = R, - R, . The flow is 
assumed to be axisymmetric and periodic in the axial or z-direction; say, with period 

L = 2n-Rllk, 

where k is the axial wave number. Dimensionless variables are introduced using RI 
as the length scale and c.olR, as the velocity scale (wl is the angular velocity of the 
inner cylinder). Then with 

Re = qR121v, (1.2a) 
6 = A/R,, (1.2b) 

rl= R,I& , (1.2c) 

the Navier-Stokes equations for this flow become 

24, + ; u + U’, = 0, 

V2u - -$ u - pr = Re [ uu, f w, - 1 v2 I 1 , 

(1.3a) 

(1.3b) 

(1.3c) 

(1.3d) v2w - pz - Re[w, + ww,]. 

Here V2 is the axisymmetric cylindrical Laplacian 

a2 I a a2 
v2'~+;~+@. 

The inner cylinder is to rotate and the outer cylinder will be at rest. Thus the bound- 
ary conditions on the cylinders are: 

U(l,Z) = 0, v(1, z) = 1, w(1, z) = 0; (1.4a) 
U(1 + 6,z) = 0, v(l + 6, z) = 0, w(l + 6, z) = 0. (1.4b) 

Periodicity in the z-direction is imposed by requiring 

u (c +) = u (5 - +), u (r, -Jg) = u (& - -p), 
(1.4c) 

w (6 +) = w (6 - +), p (6 -+) = p (r, - %). 
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2. NUMERICAL METHODS 

2A. Fourier Decomposition 

To approximate the solutions of (1.3), (1.4) we first expand in finite Fourier series 
in the z-direction. The coefficients in these expansions depend on r and finite differen- 
ces are used to approximate them. Specifically we seek solutions in the form 

p(r, z) = f pi(r) cos jkz, 
N 

u(r, z) = 1 uj(r) cos jkz, 
j=O j=O 

(2.1) 
N N 

u(r, I) = c uj(r) cos jkz, w(r, z) = 1 w3.(r) sin jkz. 
5=0 i=l 

Thus p, u, u are assumed even in z while w is odd. This last assumption and the 
pcriodicity in (1.4~~) implies that w(r, -&r/k) = 0 so no fluid flows across the planes 
z = &r/k. 

We insert expansions (2.1) into (1.3) and use the orthogonality of the trigono- 
metric functions on [-ST, 7~1 (i.e., Galerkin’s method) to get, for j = 0, l,..., N in 
(2.2a)-(2.2c) and for j = 1,2 ,..., N in (2.2d), 

ui + i u5 + jkwj = 0, (2.2a) 

-u: - f U; + [(jk)” + -$] uj + pi = Ref,,(U, U’, V, W; r), (2.2b) 

-v; - i U; + [(jk,’ + $1 ~j = Ref.j(U, V, V’, W; r), (2.2c) 

-w; - + W; + (,jkj2 wj - jkpj = Re f&U, W, W’; r). (2.2d) 

Here primes denote r-differentiation. The coefficients, grouped as the vector U =-I 
(140 3 % ,**-, UN), etc., enter into the fUnCtiOnSfiT quadratically; for example, 

MU U, V, W; r) 

-s 
n/k 

-nlk I 
dz (1 <j,<N) 

+ .il [ u,u~-~ + &un-j - (n - j) kW,U,-j - nku,w,-j - 3 u,c,-~ . (2.3) 
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The other functions, fii and f$ , are determined similarly and are given in [12, Eqs. 
(2.13), (2.14)]. 

The periodicity boundary conditions (1.4c) are automatically satisfied by expan- 
sions (2.1). On r = 1 and r = 1 + 8 we get from (2.1) in (1.4a), (1.4b) the boundary 
conditions 

u,( 1) = Q(l) = 0, 1 < j < N; u,(l) = 0, c,(l) = 1; (2.4a) 

ui( 1 + S) = uj( 1 + 8) = wi(l + 6) = 0, 1 < j < N; 

U,(l + 8) = V,(l + 6) = 0. 
(2.4b) 

From (2.2a) withj = 0 and u,,(l) = 0 it follows that u,,(r) E 0. We used this result 
to eliminate u,,(r) and thus to simplify the program slightly. We also note that only 
p;(r) enters into the Eqs. (2.2) and sop&) is undetermined to within a constant. Thus 
we arbitrarily set 

P,(l) = 0. (2.44 

2B. Difference Approximations 

System (2.2)-(2.4) is a two-point boundary-value problem but it is not immediately 
clear that the problem is well posed. To show how well posedness can be established 
let the N + 1 functions p,(r), 0 <j < N, be given. Then (2.2b)-(2.2d) form a system 
of 3N + 2 nonlinear second-order equations for as many unknowns [uj(r), z+(r), 
wj(r)]r (recalling w,,(r) never enters). In (2.4a), (2.4b) we have 6N + 4 boundary 
conditions. So this system is formally consistent (i.e., has the proper number of 
boundary conditions for a unique solution). The N + I equations in (2.2a) can then 
be viewed as constraints which determine the N + 1 coefficients pj(r). In our method 
the pressure coefficients will be determined simultaneously with the velocity coefficients 
(by employing Newton’s method on the entire system). 

We approximate system (2.2X2.4) by means of finite differences. Specifically a 
uniform net r,,, = 1 + mh, 0 < m < A4 + 1, with h = S/(M + 1) is placed on 
[l, 1 + 61. Then in (2.2) we use centeredfinite dfferences at each r, , 1 < m < M, so 
that the scheme has O(h2) accuracy. Since u,,(r) = 0 has been eliminated this yields 
2M(2N + 1) equations. There are (6N + 3) boundary conditions remaining in (2.4) 
so we have (4MN + 2M + 6N + 3) equations. However, there are (4N + 2)(M + 2) 
unknowns and thus (2N + 1) additional equations are required for a determined 
system. To get them we eliminate u; from (2.2b) by adding to it the r-derivative of 
(2.2a). The resulting N + 1 equations are 

pi + WY 24 + (.H 4 = ReMU, U’, V, W; r>, O,<j,<N. (2.5) 

These are tist order and we difference them at r, + h/2 and r,,, + h/2 using the mid- 
point rule. This gives 2N + 2 additional equations but we drop the equation for 
j = 0 at rO + h/2. These difference relations are sometimes referred to as the “pressure 
boundary conditions,” but there is no real justification for that terminology. There 
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are many other ways in which the missing 2N + 1 constraints could have been 
imposed. But some numerical experiments done on Couette flow indicate that the 
above procedure is best. 

The difference equations form a nonlinear algebraic system of (2N + 1)(2M + 1) 
equations and unknowns when the specified values of the (6N + 3) quantities in the 
boundary conditions (2.4) are eliminated [we do not count u,(r,) and uO(rM+l) here as 
they have been eliminated previously]. These equations can be written in the vector 
form 

G(x, Re) 4 Ax - ReF(x) - b = 0. (2.6) 

Here A is a block tridiagonal matrix, x is some ordering of the unknowns on the net, 
F(x) represents the difference forms of thef& on the net, and b is the forcing term due 
to the boundary condition a,,( 1) = 1. A more detailed discussion of the ordering and 
structure of A is given in [ 121. It has a block tridiagonal structure and in the computa- 
tions it is treated as a band matrix of bandwidth (ION + 5). 

2C. Solution Procedures 

The discrete system (2.6) is solved using the pseudoarclength continuation method 
of [7,8]. In particular, these techniques are efficient for continuing in the Reynolds 
number, Re, and for determining bifurcating branches of solutions. The basic idea is 
to consider a curve or branch of solutions, [x(s), Re(s)], parametrized by some new 
parameter, s (essentially arclength). Then if the solution is known at s = S, , say, and 
we have determined the “tangent” [X(S,,), Re(s,,)] to the solution curve, a predicted 
value of the solution at s = s,, + ds is 

[x0(x), Re”Wl = Wo), Re(s,)l + ds[k(s,), R&s,)]. (2.7) 

This is used as the initial guess in Newton’s method to solve (2.6) and the adjoined 
pseudoarclength condition 

((x(s) - x(so)), Ii( + (Re(s) - Re(s,)) . R&so) = 4s. (2.8) 

After the new solution is obtained the new tangent vector is easily computed and the 
procedure is continued. 

The possible occurrence of bifurcation is signaled by the change in sign of the 
determinant of the Jacobian matrix 

3G 
_ 1: A - Re F’(x). 

3X 
(2.9) 

When this occurs we first locate accurately the solution [x(s), Re(s)] at which (2.9) is 
singular. Then appropriate tests are made to see if bifurcation may occur. If it does we 
compute the tangent vector to the bifurcating branch of solutions and then continue 
along this new branch. All the required procedures are described in [7, 121. The 
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main computational problem in these procedures is the L&factorization of the 
Jacobian (2.9). This is done using a band structure with bandwidth (10N + 5). 

“Newton’s method” as we employ it is actually a combination of an occasional true 
Newton step (i.e., determining a new Jacobian matrix and finding its LU-factored 
form) and several chord or special Newton steps. The latter use the latest previously 
factored Jacobians. Although much faster, this technique uses more storage so its 
effectiveness is of course dependent on machine size and problem size. Using N = 8 
modes with A4 = 15 internal grid points our Jacobian was of order 527 with band- 
width 101. Jt required about 35 set to evaluate the matrix elements, about 30 sec. to do 
the LU-decompositions, and about 1 set for a back substitution. In one case (Re ;:I 
130,q = 0.5) a solution was obtained in about 6 to 8 Newton iterations taking about 
9 min. When the chord method was introduced a solution was obtained in about 
2.7 min. All of these computations were done on the IBM 370/158 at Caltech. 

After a solution [x(s), Re(s)] has been determined the velocity and pressure fields 
are computed on an appropriate (r, z)-grid. This employs fast Fourier transforms 
(FFTs) to evaluate the trigonometric sums in (2.1). We thank Prof. B. Fornberg for 
advice and for providing subroutines for FFTs, field plots, and band elimination. 

3. RESULTS OF CALCULATIONS 

Extensive computations have been done on two configurations for which experimen- 
tal results [4] are available. The outer cylinder is always at rest, w2 = 0; the outer 
radius is fixed at R, = 2 cm; and two values of the inner radius are used: R, = I cm, 
d = 1 cm (the wide gap case), and R, = 1.9 cm, A = 0.1 cm (the narrow gap case). 
Different fluids were used in each case and by varying the inner angular velocity wr a 
wide range of Reynolds numbers were covered. Some of the results, showing bifurca- 
tion from Couette flow, are presented in terms of graphs (Figs. 1 and 3) of Reynolds 
number based on gap width, Res, versus an average torque. From (1.2) we have that 

The experimental cylinders were 10 cm long and the torque was measured on the 
middle 5cm of the outer cylinder, to reduce end effects. To compute the average torque 
at radius r on a portion .of cylinder of length H we use, in a combination of dimen- 
sional and dimensionless variables, 

G(r) = 2m2Hpv2 Re [* - +I. h (r) 

Here v is the kinematic viscosity and p is the density of the fluid. For exact steady- 
state solutions G(r) should be independent of r. We computed G(r) at rl12 = 1 + h/2 
and at rMtli2 = 1 + S - h/2 to maintain 0(h2) accuracy. The values G(r,,,) are used 
in the graphs and we generally found that G(r,+,,,) - G(r,,,) =E AG > 0. As the 
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t 
M=15 

0 50 100 150 200 250 
Reynolds Number ( Re6 ) 

FIG. 1. Torque vs Re* for narrow gap case: RI = 1.9, Rz = 2.0, L/A = 2.007. Experiments 
of [4]: +; Couette flow: 0; present calculations: -; accurate computed bifurcation point: l , 
M = 80. Three computations of the bifurcating branch are shown, each using a different number 
M of interior net points. 

mesh was refined 1 dG I decreased. In the narrow gap case we observe j dG l/G(r,,,) < 
0.5 % for M = 31 points. In the wide gap case / dG l/G < 3 % for M = 31 and 
I AG I/G < 7 % for M = 15. 

3A. Narrow Gap Problem 

The fluid used in these experiments had v = 5.796 x 1O-3 cma/sec, p = I .585 g/cm3 
and we note that for this configuration 77 = 0.95, 6 = l/19. Calculations were done 
for a series of Re values while the axial wave number k was fixed at the value kcr = 
59.47. At this value Re&k) has a minimum; see [3] where (k&i) is given. It corresponds 
to the ratio of period to gap width L,,/rl = 2n-/(kc& = 2.007. Some discussion of 
the stability of flows with 1~ near kcr is contained in [3, lo]. 

In Fig. 1 we plot the torque on H = km of cylinder versus Res from the experi- 
ments [4]; from Couette flow; and from our present calculations, G(r,,,). There are 
22 computed points on the bifurcating branch which used A4 = 31 net points. The 
branch was also computed using M = 15 and A4 = 7 points. Cruder net spacing 
shifts the bifurcating branch but does not change its slope. The bifurcation point was 
also determined using M = 80 grid points to get Recr = 184.86. Computations near 
bifurcation used only N = 2 Fourier modes. As the amplitudes of the higher modes 
grow, with increasing Re values, additional modes are included along the bifurcating 
branch. Two criteria are used for adding modes: (i) if the amplitudes of the highest 
frequency mode cease to be “small”, (ii) if the ratio of maxima of corresponding 
amplitudes of the highest to next highest mode is greater than 10-l. The short branch 
with M = 7 net points used only N = 2 modes for each of 16 values of Res in 173.8 < 
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FIG. 2. Level lines of pressure and velocity components in the Taylor vortex flow for the narrow 
gap case at Red = 262.28. These calculations used N = 6 modes and A4 = 15 internal net points. 
The (u, W) vector field in an axial section of the gap is also shown. 

Res ,< 182.2. The longest branch with A4 = 15 net points used N = 2 modes for 18 
values in 181.94 < Re8 < 190.78, then N = 4 modes for 6 values in 189.28 ,< Res < 
196.17, and finally N = 6 modes for 12 values in 195.08 < Res < 262.28. (We only 
show values for Res < 214.77 in Fig. 1, more details are contained in [12, p. 401.) The 
most accurate branch with A4 = 31 points used N = 2 modes for 12 values in 184.21 < 
Res ,( 188.66 and N = 4 modes for 10 values in 189.28 < Res < 205.35. The devia- 
tion between this best computed and the measured curves for Res > 195 is most likely 
due to secondary bifurcation of the actual flow into a nonaxisymmetric state; see 
[2,5, 61. We have not yet included such effects in our calculations. They offer no con- 
ceptual difficulties but could not be implemented on the computer used. 

Calculations have also been done for a series of k or L/d values in 1.46 < L/d < 
2.007 while holding the Reynolds number Res essentially constant (i.e., 203.9 < 
Res < 205.4). These results show that the radial velocity, U(T, z), has a (negative) 
minimum at about L/d = 1.8. Thus the largest return flow from the outer to the 
inner cylinder occurs for this case and is in agreement with the experiments of Donnelly 
and Schwarz for Re8 near 200 reported in [l 1, p. 18781. 

In Fig. 2 we plot level lines of (p, U, U, w) and show the direction field (u, w) for the 
solution on the bifurcated branch with L/A = 2.007 and Res = 262.28. 

3B. Wide Gap Problem 

In this case the fluid properites are v = 0.1226 cm2/sec, p = 0.8404 g/cm8 and the 
geometry implies 7 = 0.5, 6 = 1. More modes and net points are required for an 
accurate representation of the solutions at higher Re values in this problem. Thus we 
have only studied the first bifurcating branch and have not examined several two- 
dimensional equilibria observed in [13]. 
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For the wide gap Re&) has a minimum at k = kc, = 3.16 or L/A = 1.988; see 
[3]. With this fixed value we easily compute the Couette flow branch and find a bi- 
furcation at Recr = 68.113. For this accurate determination of Recr we use A4 = 63 
points and N = 2 modes. The bifurcating branch was computed using M = 3 1 points 
and N = 4 modes for Res < 73. With M = 15 points we used N = 4 modes for 
67.25 < Res 6 81.18, then N = 6 modes for 81.18 < Res < 101.76, and finally 
N = 8 modes up to Res = 280.99. Some of these results are shown in Fig. 3, were 
the computed torque vs Res is plotted along with the experimentally measured values 
and the Couette flow values. Computed values are shown up to Res -mm 130 and nine 
points are included here. Six further values were computed up to Res = 280.99, where 
G(r,,,) = 588.958 was obtained (see [12, p. 521 for a complete table of values). 

0 40 60 120 160 
Reynolds Number (Re*) 

FIG. 3. Torque vs Res for wide gap case: RI = 1.0, Rz = 2.0, L/A = 1.988. Experiments of 
[4]: +; Couette flow: c; present calculations: --; accurate computed bifurcation point: l , M = 63. 
The bifurcating branch computations used A4 = 31 net points for Res Q 73 and M = 15 net points 
above. 

Calculations with fixed Res = 101.8 have been done for eight values of L/A in 
1.288 < L/A < 1.988. It was found that the torque on 5 cm has a maximum at about 
L/A = 1.688. Such maxima have also been reported at Res values up to 79.4 in [3]. 

Finally in Fig. 4 we show contour plots of (p, u, U, w) and the vector field (u, w) for 
the wide gap solution on the bifurcated branch for L/A = 1.988 at Res = 280.99. 
These results are intended to show the qualitative behavior of the flow at the highest 
Res value for which we computed with at least 15 net points. The high-frequency 
wiggles are introduced by the plotting procedure. They are indicative of large gradients 
and thus suggest the need for finer meshes. Also the number of Fourier modes was not 
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P u w (u,w) 

FIG. 4. Level lines of pressure and velocity components in the Taylor vortex flow for the wide 
gap case at Red = 280.99. These calculations used N = 8 modes and M = 15 internal net points. 
The (u, w) vector field in an axial section of the gap is also shown. 

sufficient as all computed coefficients were of comparable orders showing that some 
absent modes were nonnegligible. However, the corresponding plots for Rz8 < 127 
were quite smooth, similar to those of Fig. 2 for the narrow gap case, and we believe 
the calculations in that range are quite accurate. 
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